Thursday, May 12, 2016

SECURE COMPUTING

ATS_SC16_001: MMBcloud-tree: Authenticated Index for Verifiable Cloud Service Selection
           
             Cloud brokers have been recently introduced as an additional computational layer to facilitate cloud selection and service management tasks for cloud consumers. However, existing brokerage schemes on cloud service selection typically assume that brokers are completely trusted, and do not provide any guarantee over the correctness of the service recommendations. It is then possible for a compromised or dishonest broker to easily take advantage of the limited capabilities of the clients and provide incorrect or incomplete responses. To address this problem, we propose an innovative Cloud Service Selection Verification (CSSV) scheme and index structures (MMBcloud-tree) to enable cloud clients to detect misbehavior of the cloud brokers during the service selection process. We demonstrate correctness and efficiency of our approaches both theoretically and empirically.


ATS_SC16_002: Identity-Based Proxy-Oriented Data Uploading and Remote Data Integrity Checking in Public Cloud
             
             More and more clients would like to store their data to public cloud servers (PCSs) along with the rapid development of cloud computing. New security problems have to be solved in order to help more clients process their data in public cloud. When the client is restricted to access PCS, he will delegate its proxy to process his data and upload them. On the other hand, remote data integrity checking is also an important security problem in public cloud storage. It makes the clients check whether their outsourced data are kept intact without downloading the whole data. From the security problems, we propose a novel proxy-oriented data uploading and remote data integrity checking model in identity-based public key cryptography: identity-based proxy-oriented data uploading and remote data integrity checking in public cloud (ID-PUIC). We give the formal definition, system model, and security model. Then, a concrete ID-PUIC protocol is designed using the bilinear pairings. The proposed ID-PUIC protocol is provably secure based on the hardness of computational Diffie-Hellman problem. Our ID-PUIC protocol is also efficient and flexible. Based on the original client's authorization, the proposed ID-PUIC protocol can realize private remote data integrity checking, delegated remote data integrity checking, and public remote data integrity checking.

ATS_SC16_003: Fine-grained Two-factor Access Control for Web-based Cloud Computing Services

             In this paper, we introduce a new fine-grained two-factor authentication (2FA) access control system for web-based cloud computing services. Specifically, in our proposed 2FA access control system, an attribute-based access control mechanism is implemented with the necessity of both a user secret key and a lightweight security device. As a user cannot access the system if they do not hold both, the mechanism can enhance the security of the system, especially in those scenarios where many users share the same computer for web-based cloud services. In addition, attribute-based control in the system also enables the cloud server to restrict the access to those users with the same set of attributes while preserving user privacy, i.e., the cloud server only knows that the user fulfills the required predicate, but has no idea on the exact identity of the user. Finally, we also carry out a simulation to demonstrate the practicability of our proposed 2FA system.

No comments:

Post a Comment